当前位置: 海洋油气与水合物研究所
王志远
作者: 发布者:赵小明 发布时间:2023-12-29 访问次数:33958

职称:教授

单位:海洋油气与水合物研究所

最高学历/学位:博士研究生

学科:海洋油气工程学科,石油与天然气工程

所学专业:油气井工程

电子邮箱:wangzy1209@126.com

联系电话:(Office)0532-86981927

地址邮编:山东省青岛市经济技术开发区长江西路66号石油工程学院海洋油气工程系B709室,266580

  • 个人主页
  • 学习与工作经历
    2019年国家“万人计划”科技创新领军人才
    2017年教育部长江学者奖励计划青年学者
    2016年国家优秀青年科学基金获得者
    2018年山东省泰山学者特聘教授
    2017年孙越崎青年科技奖获得者
    2018年山东省有突出贡献的中青年科学家
    2017年山东省青年科技奖获得者
    2017年山东省杰出青年科学基金获得者
    --------------------------------------------------------------------------------------
    2000.09-2004.07年 中国石油大学(华东)石油工程学院 本科 石油工程;
    2004.09-2009.09年 中国石油大学(华东)石油工程学院 博士(硕博连读) 油气井工程;
    2009.09-2011.08年 中国石油大学(华东)地球科学与技术学院 博士后 地质资源与地质工程;
    2011.09-2016.09年 中国石油大学(华东)石油工程学院,副教授,系副主任;
    2014.09-2015.09 美国塔尔萨大学(The University of Tulsa)访问学者;
    2016.10-2021.06 中国石油大学(华东)石油工程学院 教授,所长;
    2021.07-至今  中国石油大学(华东) 重大项目办公室主任。
  • 研究方向
    油气井工程、海洋石油工程、多相流理论及应用,天然气水合物开发:
    (1)复杂条件下的井筒压力控制
    (2)钻井水力学
    (3)深水井控理论及应用
    (4)深水井筒温度压力场预测技术
    (5)深水测试及水合物防治
    (6)欠平衡及控制压力钻井
    (7)超临界二氧化碳钻井、压裂过程中的相态控制
    (8)智能完井优化设计
    (9)海域天然气水合物开发技术
  • 招生方向
  • 主讲课程
    本科生课程:海洋钻井工程、海洋油气工程
    研究生课程:深水钻井工程、海洋油气工程、深水油气工程理论与技术进展
  • 学术兼职
    (1)国家重点研发计划“深海和极地关键技术与装备”专项总体专家组专家
    (2)国家自然科学基金委会评专家
    (3)国际水合物青年论坛主席(连续4届)
    (4)SPE协会全球钻井工程奖评委会委员
    (5)SPE协会亚太油气会议组委会委员
    (6)国家科技部十三五重点研发计划项目评审专家
    (7)中国石油学会海洋工程工作部常务委员
    (8)石油工程师协会(SPE)会员
    (9)《Journal of Hydrodynamics》、《Geofluid》编委(SCI期刊)
    (10)《Sim. Trans. of SCS 》(SCI期刊)客座主编
    (11)《石油学报》、《天然气工业》、《中国石油大学学报(自然科学版)》、《水动力学研究与进展》、《中国海上油气》编委



  • 指导研究生
    博士 
    2017级 潘少伟
    2018级 张剑波、娄文强
    2019级 仉志、张洋洋、童仕坤、豆宁辉
    2020级 刘徽


    硕士  
    2014级 赵阳、潘少伟 
    2015级 张剑波、邓智铭、胡伟鹏 
    2016级 于璟、郑凯波、陈远鹏 
    2017级 娄文强、刘徽、陈旺、王泽、刘汉桥、袁凯鹏 
    2018级 都凯、郭兵、张超、仉志、童仕坤 
    2019级 弓正刚、郭宇堃、李迎超、范明、马楠、孔庆文 
    2020级 裴继昊、关立臣、杨贺民、陈刚、刘晓、李鹏飞 

  • 承担科研课题
    承担省部级以上代表性课题15项
    1.深水复杂钻井多相流动模拟关键技术与监测装备,山东省重大科技创新工程项目,7500万元,2022年-2025年,负责人
    2.天然气水合物钻采井筒多相流动障碍形成机制与安全控制方法,国家自然科学基金重大项目课题,370万元,2020年-2024年,负责人
    3.海域天然气水合物试采工程基础及关键技术,中石油重大科技项目,4291万元,2019年-2023年,负责人
    4.海域天然气水合物工程基础理论研究室平台建设,中石油科技基础条件平台建设项目,4444万元,2019年-2021年,负责人
    5.深水气井测试环雾流条件下天然气水合物流动障碍形成机制,国家自然科学基金面上项目,60万元,2020年-2023年,负责人
    6.油气井多相流动理论及应用,山东省杰出青年基金项目,60万元,2017年-2020年,负责人
    7.陵水25区块开发井井筒流动保障技术研究,中海油外委课题,200.9万,2020年-2022年,负责人
    8.油气井多相流动理论及应用,国家优青基金项目,130万元,2017年-2019年,负责人
    9.极地冰区钻井防寒工艺技术研究,国家重点研发计划,130万元,2016年-2019年,负责人
    10.深水钻井非稳态多相流动规律与井筒压力控制方法,国家973项目,755万元,2015年-2019年,第二负责人
    11.热流体压裂天然气水合物储层裂缝扩展基础理论研究,山东省自然科学基金面上项目,15万元,2016年-2019年,负责人
    12.智能井完井方式优化技术,国家863课题,240万元,2013年-2016年,负责人
    13.陵水17-2气田开发井生产期间流动保障研究,中海油项目,60万,2017年,负责人
    14.页岩气储层超临界二氧化碳压裂裂缝中支撑剂输送机理研究,国家自然基金青年基金项目,25万元,12年-15年,负责人
    15.普光气田高陡构造钻井漏喷同存环空压力控制机理研究,山东省自然科学基金项目,3万元,2011年-2013年,负责人
  • 获奖情况
    1.《海洋天然气水合物水平井试采安全提效关键技术》,海洋工程科技进步特等奖,中国海洋工程咨询协会,2023年,1/14
    2.《深水油气井筒多相变流动理论与调控方法》,海洋工程科技进步一等奖,中国海洋工程咨询协会,2021年,2/15
    3.《深水气井测试水合物防治关键技术及应用》,发明家协会创业创新一等奖,中国发明协会,2021年,1/5
    4.《海洋钻井井筒安全压力设计方法及关键技术》,海洋科技进步二等奖,海洋工程咨询协会,2017年,1/15
    5.《深部复杂压力体系地层井筒压力安全控制技术及应用》,中国安全生产协会第一届安全科技进步二等奖,省部级,2019年,1/7
    6.《多组分多相复杂流动理论及其在油气井工程中的应用》,国家能源科技进步奖一等奖,2013年,3/15
    7.《复杂钻井工况下井筒压力精确控制与工作液关键技术》,中国石油和化学工业联合会科技进步一等奖,省部级,2016年,3/15;
    8.《复杂压力体系井筒安全高效构建关键技术及应用》,山东省科学技术进步二等奖,省部级,2019年3/9
    9.《七组分井筒多相流动计算技术及应用》,山东省科技进步一等奖,省部级,2009年,4/11;
    10.《复杂环境下油气生产管柱与集输管道安全保障关键技术及应用》,中国石油和化学工业联合会科技进步一等奖,省部级,2018年,5/15



  • 荣誉称号
    1.国家“万人计划”科技创新领军人才
    2.教育部长江学者奖励计划青年学者
    3.国家优秀青年科学基金获得者
    4.山东省泰山学者特聘教授
    5.孙越崎青年科技奖获得者
    6.山东省有突出贡献的中青年科学家
    7.山东省青年科技奖获得者
    8.山东省杰出青年科学基金获得者



  • 著作
    出版专著3部,发表学术论文160余篇,其中SCI收录100余篇
    1.《深水气井天然气水合物防治理论与技术研究》,王志远、孙宝江、高永海著,科学出版社,2020
    2.《海洋油气钻井工程理论与技术》,王志远,孙宝江等著,中国石油大学出版社,2022
    3.《Natural Gas Hydrate Management in Deepwater Gas Well》,Zhiyuan Wang • Baojiang Sun •Yonghai Gao,Springer,2020
  • 论文
    [1] Wang, Z., Tong, S., Wang, C., Zhang, J., Fu, W., & Sun, B. (2020). Hydrate deposition prediction model for deep-water gas wells under shut-in conditions. Fuel, 275, 117944.
    [2] Wang, Z., Liu, H., Zhang, Z., Sun, B., Zhang, J., & Lou, W. (2020). Research on the effects of liquid viscosity on droplet size in vertical gas–liquid annular flows. Chemical Engineering Science, 115621.
    [3] Wang Z , Lou W , Sun B , et al. A model for predicting bubble velocity in yield stress fluid at low Reynolds number[J]. Chemical Engineering Science, 2019, 201:325-338.
    [4] Wang Z, Yu J, Zhang J, et al. Improved thermal model considering hydrate formation and deposition in gas-dominated systems with free water[J]. Fuel, 2019, 236: 870-879.
    [5] Wang Z, Zhao Y, Zhang J, et al. Quantitatively Assessing Hydrate-Blockage Development During Deepwater-Gas-Well Testing[J]. SPE Journal, 2018, 23(04): 1,166-1,183.
    [6] Wang Z, Liao Y, Zhang W, et al. Coupled temperature field model of gas-hydrate formation for thermal fluid fracturing[J]. Applied Thermal Engineering, 2018, 133: 160-169.
    [7] Wang Z, Zhao Y, Zhang J, et al. Flow assurance during deepwater gas well testing: Hydrate blockage prediction and prevention[J]. Journal of Petroleum Science and Engineering, 2018, 163: 211-216.
    [8] Wang Z, Zhang J, Sun B, et al. A new hydrate deposition prediction model for gas-dominated systems with free water[J]. Chemical Engineering Science, 2017, 163: 145-154.
    [9] Wang Z, Zhang J, Chen L, et al. Modeling of hydrate layer growth in horizontal gas-dominated pipelines with free water[J]. Journal of Natural Gas Science & Engineering, 2017, 50:364–373.
    [10] Wang Z, Sun B, Sun X. Calculation of temperature in fracture for carbon dioxide fracturing[J]. SPE Journal, 2016, 21(05): 1491-1500.
    [11] Wang Z, Zhao Y, Sun B, et al. Modeling of hydrate blockage in gas-dominated systems[J]. Energy & Fuels, 2016, 30(6): 4653-4666.
    [12] Wang Z, Sun B, Sun X, et al. Phase state variations for supercritical carbon dioxide drilling[J]. Greenhouse Gases: Science and Technology, 2016, 6(1): 83-93.
    [13] Wang Z, Sun B, Yan L. Improved density correlation for supercritical CO2[J]. Chemical Engineering & Technology, 2015, 38(1): 75-84.
    [14] WANG Z, SUN B, WANG X, et al. Prediction of natural gas hydrate formation region in wellbore during deep-water gas well testing[J]. Journal of Hydrodynamics, Ser. B, 2014, 26(4): 568-576.
    [15] Wang Z, Sun B, Wang J, et al. Experimental study on the friction coefficient of supercritical carbon dioxide in pipes[J]. International Journal of Greenhouse Gas Control, 2014, 25(6): 151-161.
    [16] WANG Z, SUN B. Deepwater gas kick simulation with consideration of the gas hydrate phase transition[J]. Journal of Hydrodynamics, Ser. B, 2014, 26(1): 94-103.
    [17] Wang Z, Sun B, Ke K. Pre-Spud Mud Loss Flow Rate in Steeply Folded Structures[J]. Oil & Gas Science & Technology, 2013, 69(7):1269-1281.
    [18] Wang Z, Sun B. Annular multiphase flow behavior during deep water drilling and the effect of hydrate phase transition[J]. Petroleum Science, 2009, 6(1): 57-63.
    [19] He, H., Sun, B, Wang, Z, Liu, Y., & Sun, X. (2020). A constitutive model for predicting the solubility of gases in water at high temperature and pressure. Journal of Petroleum Science and Engineering, 107337.
    [20] Zhang, J., Wang, Z., Duan, W., Fu, W., Sun, B., Sun, J., & Tong, S. (2020). Real-Time Estimation and Management of Hydrate Plugging Risk During Deepwater Gas Well Testing. SPE Journal.
    [21] Sun, B., Zhang, Z., Wang, Z., Pan, S., Wang, Z., & Chen, W. (2020). Parameter Prediction Method for Submarine Cuttings Piles in Offshore Drilling. SPE Journal.
    [22] Fang, T., Zhang, Y., Yan, Y., Wang, Z., & Zhang, J. (2020). Molecular insight into the oil extraction and transport in CO2 flooding with reservoir depressurization. International Journal of Heat and Mass Transfer, 148, 119051.
    [23] Chenwei Liu, Zhiyuan Wang, Jinlin Tian, et al. (2020). Fundamental investigation of the adhesion strength between cyclopentane hydrate deposition and solid surface materials. Chemical Engineering Science, 217, 115524.
    [24] Deng, X., Pan, S., Zhang, J., Wang, Z., & Jiang, Z. (2020). Numerical investigation on abnormally elevated pressure in laboratory-scale porous media caused by depressurized hydrate dissociation. Fuel, 271, 117679.
    [25] Lou, W., Wang, Z., Pan, S., Sun, B., Zhang, J., & Chen, W. (2020). Prediction model and energy dissipation analysis of Taylor bubble rise velocity in yield stress fluid. Chemical Engineering Journal, 125261.
    [26] Liao, Y., Sun, X., Sun, B., Wang, Z., Zhang, J., & Lou, W. (2020). Wellhead backpressure control strategies and outflow response characteristics for gas kick during managed pressure drilling. Journal of Natural Gas Science and Engineering, 75, 103164.
    [27] Fu, W., Wang, Z., Zhang, J., & Sun, B. (2020). Methane hydrate formation in a water-continuous vertical flow loop with xanthan gum. Fuel, 265, 116963.
    [28] Deng, X., Feng, J., Pan, S., Wang, Z., Zhang, J., & Chen, W. (2020). An improved model for the migration of fluids caused by hydrate dissociation in porous media. Journal of Petroleum Science and Engineering, 106876.
    [29] Sun, B., Pan, S., Zhang, J., Zhao, X., Zhao, Y., & Wang, Z. (2019). A Dynamic Model for Predicting the Geometry of Bubble Entrapped in Yield Stress Fluid. Chemical Engineering Journal, 123569.
    [30] Zhang, L., Wang, Z., Du, K., Xiao, B., & Chen, W. (2019). A new analytical model of wellbore strengthening for fracture network loss of drilling fluid considering fracture roughness. Journal of Natural Gas Science and Engineering, 103093.
    [31] Wang J, Sun B, Chen W, et al. Calculation model of unsteady temperature–pressure fields in wellbores and fractures of supercritical CO2 fracturing[J]. Fuel, 2019, 253: 1168-1183.
    [32] Sun B, Fu W, Wang Z, et al. Characterizing the rheology of methane hydrate slurry in a horizontal water-continuous system[J]. SPE Journal, 2019.
    [33] Sun X, Liao Y, Wang Z, et al. Geothermal exploitation by circulating supercritical CO2 in a closed horizontal wellbore[J]. Fuel, 2019, 254: 115566.
    [34] Fu W, Wang Z, Zhang J, et al. Investigation of rheological properties of methane hydrate slurry with carboxmethylcellulose[J]. Journal of Petroleum Science and Engineering, 2019: 106504.
    [35] Liao Y, Sun X, Sun B, et al. Transient gas–liquid–solid flow model with heat and mass transfer for hydrate reservoir drilling[J]. International Journal of Heat and Mass Transfer, 2019, 141: 476-486.
    [36] Liao Y, Sun X, Sun B, et al. Coupled thermal model for geothermal exploitation via recycling of supercritical CO2 in a fracture–wells system[J]. Applied Thermal Engineering, 2019: 113890. [19] Zhang J, Wang Z, Liu S, et al. Prediction of hydrate deposition in pipelines to improve gas transportation efficiency and safety[J]. Applied Energy, 2019, 253: 113521.
    [37] Zhang J, Wang Z, Sun B, et al. An integrated prediction model of hydrate blockage formation in deep-water gas wells[J]. International Journal of Heat and Mass Transfer, 2019, 140: 187-202.
    [38] Deng X, Pan S, Wang Z, et al. Application of the Darcy-Stefan model to investigate the thawing subsidence around the wellbore in the permafrost region[J]. Applied Thermal Engineering, 2019, 156: 392-401.
    [39] Fu W, Wang Z, Yue X, et al. Experimental Study of Methane Hydrate Formation in Water-continuous Flow Loop[J]. Energy & Fuels, 2019.
    [40] Fu W, Wang Z, Duan W, et al. Characterizing methane hydrate formation in the non-Newtonian fluid flowing system[J]. Fuel, 2019, 253: 474-487.
    [41] Sun B, Yang C, Wang Z, et al. Methodology for pressure drop of bubbly flow based on energy dissipation[J]. Journal of Petroleum Science and Engineering, 2019, 177: 432-441.
    [42] Fu W, Wang Z, Sun B, et al. Multiple controlling factors for methane hydrate formation in water-continuous system[J]. International Journal of Heat and Mass Transfer, 2019, 131: 757-771.
    [43] Wang J, Wang Z, Sun B, et al. Optimization design of hydraulic parameters for supercritical CO2 fracturing in unconventional gas reservoir[J]. Fuel, 2019, 235: 795-809.
    [44] Sun B, Zhang Z, Wang Z, et al. Interfacial friction factor prediction in vertical annular flow based on the interface roughness[J]. Chemical Engineering & Technology, 2018, 41(9): 1833-1841.
    [45] Wang M, Wang J, Fang T, Yang Y, Wang Z, et al. Shape Transition of Water-in-CO2 Reverse Micelles Controlled by Surfactant Midpiece[J]. Physical Chemistry Chemical Physics, 2018, 20(22): 15535-15542.
    [46] Sun B, Wang J, Wang Z, et al. Calculation of proppant-carrying flow in supercritical carbon dioxide fracturing fluid[J]. Journal of Petroleum Science and Engineering, 2018, 166: 420-432.
    [47] Sun X, Wang Z, Sun B, et al. Research on hydrate formation rules in the formations for liquid CO2 fracturing[J]. Journal of Natural Gas Science and Engineering, 2016, 33: 1390-1401.
    [48] Wang N, Sun B, Wang Z, et al. Numerical simulation of two phase flow in wellbores by means of drift flux model and pressure based method[J]. Journal of Natural Gas Science and Engineering, 2016, 36: 811-823.
    [49] Chenwei Liu, Zhiyuan Wang, Jinlin Tian, et al. (2020). Fundamental investigation of the adhesion strength between cyclopentane hydrate deposition and solid surface materials. Chemical Engineering Science, 217, 115524.
    [50] Lou, W., Wang, Z., Pan, S., Sun, B., Zhang, J., & Chen, W. (2020). Prediction model and energy dissipation analysis of Taylor bubble rise velocity in yield stress fluid. Chemical Engineering Journal, 125261.
    [51] Jianbo Zhang,Zhiyuan Wang,Wenguang Duan,et al. (2020). Real-Time Estimation and Management of Hydrate Plugging Risk During Deepwater Gas Well Testing. SPE Journal, 
    [52] Fu, W., Wang, Z., Chen, L., & Sun, B. (2020). Experimental Investigation of Methane Hydrate Formation in the Carboxmethylcellulose (CMC) Aqueous Solution. SPE Journal.
    [53] Fu, W., Wang, Z., Sun, B., Xu, J., Chen, L., & Wang, X. (2020). Rheological Properties of Methane Hydrate Slurry in the Presence of Xanthan Gum. SPE Journal.
    [54] Fu, W., Wang, Z., Zhang, J., & Sun, B. (2020). Methane hydrate formation in a water-continuous vertical flow loop with xanthan gum. Fuel, 265, 116963.
    [55] Zhang Z, Wang Z, Gao Y, et al. Experimental study on the effect of surfactants on the characteristics of gas carrying liquid in vertical churn and annular flows[J]. Journal of Petroleum Science and Engineering, 2019, 180: 347-356.
    [56] Zhang Z, Wang Z, Liu H, et al. Experimental study on entrained droplets in vertical two-phase churn and annular flows[J]. International Journal of Heat and Mass Transfer, 2019, 138: 1346-1358.
    [57] Zhang Z, Wang Z, Liu H, et al. Experimental study on bubble and droplet entrainment in vertical churn and annular flows and their relationship[J]. Chemical Engineering Science, 2019, 206: 387-400.
    [58] Zhang S, Wang Z, Sun B, et al. Pattern transition of a gas–liquid flow with zero liquid superficial velocity in a vertical tube[J]. International Journal of Multiphase Flow, 2019, 118: 270-282.
    [59] Sun X, Wang Z, Liao Y, et al. Geothermal energy production utilizing a U-shaped well in combination with supercritical CO2 circulation[J]. Applied Thermal Engineering, 2019, 151: 523-535.
    [60] Fu W, Wang Z, Sun B, et al. A mass transfer model for hydrate formation in bubbly flow considering bubble-bubble interactions and bubble-hydrate particle interactions[J]. International Journal of Heat and Mass Transfer, 2018, 127: 611-621.
    [61] Sun X, Wang Z, Sun B, et al. Modeling of dynamic hydrate shell growth on bubble surface considering multiple factor interactions[J]. Chemical Engineering Journal, 2018, 331: 221-233.
    [62] Wang X, Wang Z, Deng X, et al. Coupled thermal model of wellbore and permafrost in Arctic regions[J]. Applied Thermal Engineering, 2017, 123: 1291-1299.
    [63] Wang J, Wang Z, Sun B. Improved equation of CO2 Joule–Thomson coefficient[J]. Journal of CO2 Utilization, 2017, 19: 296-307.
    [64] He, H., Sun, B., Wang, Z., Liu, Y., & Sun, X. (2020). A constitutive model for predicting the solubility of gases in water at high temperature and pressure. Journal of Petroleum Science and Engineering, 107337.
    [65] Sun, B., Zhang, Z., Wang, Z., Pan, S., Wang, Z., & Chen, W. (2020). Parameter Prediction Method for Submarine Cuttings Piles in Offshore Drilling. SPE Journal.
    [66] Gao Y, Chen Y, Wang Z, et al. Experimental study on heat transfer in hydrate-bearing reservoirs during drilling processes[J]. Ocean Engineering, 2019, 183: 262-269.
    [67] Liu Z, Sun B, Wang Z, et al. New Mass-Transfer Model for Predicting Hydrate Film Thickness at the Gas–Liquid Interface under Different Thermodynamics–Hydrodynamics-Saturation Conditions[J]. The Journal of Physical Chemistry C, 2019, 123(34): 20838-20852.
    [68] Sun B, Liu Z, Wang Z, et al. Experimental and modeling investigations into hydrate shell growth on suspended bubbles considering pore updating and surface collapse[J]. Chemical Engineering Science, 2019.
    [69] Wang X, Sun B, Wang Z, et al. Coupled heat and mass transfer model of gas migration during well cementing through a hydrate layer in deep-water regions[J]. Applied Thermal Engineering, 2019: 114383.
    [70] Zhao Y, Liu S, Wang Z, et al. An adaptive pattern recognition method for early diagnosis of drillstring washout based on dynamic hydraulic model[J]. Journal of Natural Gas Science and Engineering, 2019, 70: 102947.
    [71] Zhang Z, Sun B, Wang Z, et al. Whole wellbore liquid loading recognition model for gas wells[J]. Journal of Natural Gas Science and Engineering, 2018, 60: 153-163.
    [72] Sun X, Sun B, Wang Z, et al. A hydrate shell growth model in bubble flow of water-dominated system considering intrinsic kinetics, mass and heat transfer mechanisms[J]. International Journal of Heat and Mass Transfer, 2018, 117: 940-950.
    [73] Sun B, Wang X, Wang Z, et al. Transient temperature calculation method for deep-water cementing based on hydration kinetics model[J]. Applied Thermal Engineering, 2018, 129: 1426-1434.
    [74]  Sun B, Sun X, Wang Z, et al. Effects of phase transition on gas kick migration in deepwater horizontal drilling[J]. Journal of Natural Gas Science and Engineering, 2017, 46: 710-729.
    [75] Wang J, Sun B, Wang Z, et al. Study on filtration patterns of supercritical CO2 fracturing in unconventional natural gas reservoirs[J]. Greenhouse Gases Science & Technology, 2017, 7(6): 1126-1140.
    [76] Sun X, Sun B, Wang Z, et al. A new model for hydrodynamics and mass transfer of hydrated bubble rising in deep water[J]. Chemical Engineering Science, 2017, 173: 168-178.
    [77] Sun B, Guo Y, Wang Z, et al. Experimental study on the drag coefficient of single bubbles rising in static non-Newtonian fluids in wellbore[J]. Journal of Natural Gas Science and Engineering, 2015, 26: 867-872.
    [78] Hou L, Sun B, Wang Z, et al. Experimental study of particle settling in supercritical carbon dioxide[J]. The Journal of Supercritical Fluids, 2015, 100: 121-128.
    [79] SUN B, GONG P, WANG Z. Simulation of gas kick with high H2S content in deep well[J]. Journal of Hydrodynamics, Ser. B, 2013, 25(2): 264-273.
    [80] Wang, X., Shen, H., Sun, B., Wang, Z., Gao, Y., Li, H., & Pang, X. (2020). Mechanism of gas migration through microstructure of cemented annulus in deep-water environment. Journal of Natural Gas Science and Engineering, 103316.
    [81] Yin, B., Zhang, X., Sun, B., Wang, Z., Gong, P., & Huang, M. Evaluation Method for Probability of Blowout after the Failure of Offshore Well Killing. Indian Journal of Geo Marine Sciences, 2020. 49(02):249-259
    [82] Wang X, Sun B, Gao Y, et al. Numerical simulation of the stability of hydrate layer during well cementing in deep-water region[J]. Journal of Petroleum Science and Engineering, 2019, 176: 893-905.
    [83] Sun B, Fu W, Wang N, et al. Multiphase flow modeling of gas intrusion in oil-based drilling mud[J]. Journal of Petroleum Science and Engineering, 2019, 174: 1142-1151.
    [84] Jin-Tang W , Bao-Jiang S , Hao L , et al. Numerical simulation of cementing displacement interface stability of extended reach wells[J]. Journal of Hydrodynamics, 2018, 30(3):420-432.
    [85] Gao Y, Chen Y, Zhao X, et al. Risk analysis on the blowout in deepwater drilling when encountering hydrate-bearing reservoir[J]. Ocean Engineering, 2018, 170: 1-5.
    [86] Gao Y, Sun X, Zhao T, et al. Study on the migration of gas kicks in undulating sections of horizontal wells[J]. International Journal of Heat and Mass Transfer, 2018, 127: 1161-1167.
    [87] Wang X, Sun B, Luo P, et al. Transient temperature and pressure calculation model of a wellbore for dual gradient drilling[J]. Journal of Hydrodynamics, 2018, 30(4): 701-714.
    [88] Sun X, Sun B, Zhang S, et al. A new pattern recognition model for gas kick diagnosis in deepwater drilling[J]. Journal of Petroleum Science and Engineering, 2018, 167: 418-425.
    [89] Sun X, Sun B, Gao Y, et al. A model of multiphase flow dynamics considering the hydrated bubble behaviors and its application to deepwater kick simulation[J]. Journal of Energy Resources Technology, 2018, 140(8): 082004.
    [90] Wang N, Sun B, Gong P, et al. Improved Void Fraction Correlation for Two‐Phase Flow in Large‐Diameter Annuli[J]. Chemical Engineering & Technology, 2017, 40(4): 745-754.
    [91] Wang N, Wang J, Sun B, et al. Study of transient responses in the APWD measurements during gas influx[J]. Journal of Natural Gas Science and Engineering, 2016, 35: 522-531.
    [92] Sun, X., Xia, A., Sun, B., Liao, Y., Wang, Z., & Gao, Y. (2019). Research on the heat and mass transfer mechanisms for growth of hydrate shell from gas bubbles. The Canadian Journal of Chemical Engineering, 97(6), 1953-1960.
    [93] Wang J, Sun B, Li H, et al. Phase state control model of supercritical CO 2 fracturing by temperature control[J]. International Journal of Heat and Mass Transfer, 2018, 118: 1012-1021.
    [94] Hou L, Sun B, Geng X, et al. Study of the slippage of particle/supercritical CO2 two-phase flow[J]. The Journal of Supercritical Fluids, 2017, 120: 173-180.
    [95] Wang X , Sun B , Liu S , et al. A coupled model of temperature and pressure based on hydration kinetics during well cementing in deep water[J]. Petroleum Exploration and Development, 2020, 47(4):867-876.
    [96] Sun B, Guo Y, Sun W, et al. Multiphase flow behavior for acid-gas mixture and drilling fluid flow in vertical wellbore[J]. Journal of Petroleum Science and Engineering, 2018, 165: 388-396.
    [97] 王志远, 赵阳, 孙宝江,等. 深水气井测试管柱内天然气水合物堵塞特征与防治新方法[J]. 天然气工业, 2018,38(1):71-78.
    [98] Wang Z, Wang X, Sun B, et al. Analysis on Wellhead Stability During Drilling Operation in Arctic Permafrost Region[C]//ASME 2017 36th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2017: V008T11A008-V008T11A008.
    [99] 王志远, 孙宝江, 高永海,等. 水合物藏钻探中的环空多相流溢流特性研究[J]. 应用基础与工程科学学报, 2010, 18(1):129-140.
    [100] Wang Z Y, Sun B J, Cheng H Q, et al. Prediction of gas hydrate formation region in the wellbore of deepwater drilling[J]. Petroleum Exploration & Development, 2008, 35(6):731-735.
    [101] 王志远, 孙宝江, 高永海,等. 深水司钻法压井模拟计算[J]. 石油学报, 2008, 29(5):786-790.
    [102] 王志远, 孙宝江. 深水司钻压井法安全压力余量及循环流量计算[J]. 中国石油大学学报(自然科学版), 2008, 32(3):71-74.
    [103] Zhang, J., Wang, Z., Tong, S., Gong, Z., Ma, N., & Sun, B. (2020, July). Hydrate Plugging Prevention in Deep Water Gas Wells. In SPE/AAPG/SEG Unconventional Resources Technology Conference. Unconventional Resources Technology Conference.
    [104] Liao, Y., Wang, Z., Pan, D., Sun, B., & Duan, W. (2019, November). Gas Kick Simulation for Offshore Gas-Hydrate Reservoir Drilling. In Abu Dhabi International Petroleum Exhibition & Conference. Society of Petroleum Engineers.
    [105] Zhang, J., Wang, Z., Duan, W., Fu, W., Tong, S., & Sun, B. (2019, November). Real-Time Estimation and Management of Hydrate Plugging Risk During Deep-Water Gas Well Testing. In Abu Dhabi International Petroleum Exhibition & Conference. Society of Petroleum Engineers.
    [106] Deng Z, Wang Z, Zhao Y, et al. Flow Assurance during Gas Hydrate Production: Hydrate Regeneration Behavior and Blockage Risk Analysis in Wellbore[C]// Abu Dhabi International Petroleum Exhibition & Conference. 2017.
    [107] Zhao Y, Wang Z, Yu J, et al. Hydrate Plug Remediation in Deepwater Well Testing: A Quick Method to Assess the Plugging Position and Severity[C]// Spe Technical Conference and Exhibition. 2017.
    [108] Zhao Y, Wang Z, Zhang J, et al. Flow Assurance during Deepwater Gas Well Testing: Addressing Hydrate Associated Problems at Reduced Cost[C]// Offshore Technology Conference. 2017.
    [109] Zhao Y, Wang Z, Zhang J, et al. Flow Assurance During Deepwater Gas Well Testing: When and Where Hydrate Blockage Would Occur[C]// Spe Technical Conference and Exhibition. 2016.
    [110] 孙宝江, 王志远, 公培斌,等. 深水井控的七组分多相流动模型[J]. 石油学报, 2011, 32(6):1042-1049.
    [111] Pan, S., Sun, B., Wang, Z., Fu, W., Zhao, Y., Lou, W., & Wang, J. (2019, October). A New Model to Improve the Accuracy of Wellbore Pressure Calculation by Considering Gas Entrapment. In SPE/IATMI Asia Pacific Oil & Gas Conference and Exhibition. Society of Petroleum Engineers.
    [112] Fu W, Sun B, Wang Z, et al. Characterizing Methane Hydrate Formation in Horizontal Water-Dominated Bubbly Flow[C]//SPE Asia Pacific Oil and Gas Conference and Exhibition. Society of Petroleum Engineers, 2018.
    [113] 张振楠, 孙宝江, 王志远, 等. 产液气井泡沫排液起泡能力分析[J]. 石油学报, 2019, 40(01):108-114.
    [114] Wang X, Sun B, Wang Z, et al. Transient Thermal Model of Drilling Fluid in Wellbore under the Effect of Permafrost Thaw during Drilling in Arctic Region[C]// SPE/IATMI Asia Pacific Oil & Gas Conference and Exhibition. 2017.
    [115] Sun X, Sun B, Wang Z. Wellbore Dynamics of Kick Evolution Considering Hydrate Phase Transition on Gas Bubbles Surface During Deepwater Drilling[C]// ASME 2017, International Conference on Ocean, Offshore and Arctic Engineering. 2017:V008T11A059.
    [116] Zhang Z, Sun B, Wang Z, et al. Liquid Loading in Subsea Production Riser and a New Prediction Model[C]//The 26th International Ocean and Polar Engineering Conference. International Society of Offshore and Polar Engineers, 2016.
    [117] 孙宝江, 孙小辉, 王志远, 等. 超临界CO2钻井井筒内流动参数变化规律[J]. 中国石油大学学报: 自然科学版, 2016, 40(3): 88-95.
    [118] 柯珂, 管志川, 王志远, 等. 修正设计系数的套管层次与下入深度设计方法[J]. 中国石油大学学报: 自然科学版, 2016, 40(2): 76-82.
    [119] 孙小辉, 孙宝江, 王志远. 超临界CO2压裂裂缝温度场模型[J]. 石油学报, 2015, 36(12):1586-1592.
    [120] Sun B, Xiang C, Wang Z. Influence of Altitudes and Air Humidity to the Minimum Gas InjectionRate in Air Underbalanced Drilling[J]. Open Petroleum Engineering Journal, 2012, 5(1):104-108.
    [121] 孙宝江, 宋荣荣, 王志远. 高含硫化氢天然气气侵时的溢流特性[J]. 中国石油大学学报(自然科学版), 2012, 36(1):73-79.
    [122] 马永乾, 孙宝江, 王志远, 等. 垂直上升气液柱塞流中含气率分布[J]. 中国石油大学学报(自然科学版), 2010, 34(1):64-69.
    [123] 高永海, 孙宝江, 王志远, 等. 深水钻探井筒温度场的计算与分析[J]. 中国石油大学学报(自然科学版), 2008, 32(2):58-62.
    [124] Sun B, Gao Y, Wang Z, et al. Temperature Calculation And Prediction of Gas Hydrates Formed Region In Wellbore In Deepwater Drilling[C]//The Eighteenth International Offshore and Polar Engineering Conference. International Society of Offshore and Polar Engineers, 2008.
    [125] Liu, Z., Sun, B., Ke, K., Wang, Z., Li, H., Pan, S., & Xiao, B. (2019, July). Study on the Hydrodynamics of Rising Bubbles Considering Hydrate Phase Transition During the Shut-in Period in Avoiding the Typhoon. In The 29th International Ocean and Polar Engineering Conference. International Society of Offshore and Polar Engineers.
    [126] Sun X, Sun B, Gao Y, Wang Z, et al. Transient Fully Coupled Hydrodynamic-Hydrate Model for Deepwater Kick Simulation[C]// Offshore Technology Conference Asia. 2018.
    [127] 王宁, 孙宝江, 刘书杰, 王志远, 高永海. 井筒内气体扩散侵入定量计算模型[J]. 石油学报, 2017(09):114-122.
    [128] Wang N, Sun B, Gao Y, Wang Z, et al. Footage-Based Hydraulic Optimization of Deepwater Drilling for Maximum Drilling Rate[C]//The Twenty-fifth International Ocean and Polar Engineering Conference. International Society of Offshore and Polar Engineers, 2015.
    [129] 马永乾, 孙宝江, 邵茹, 王志远, 等. 注气法双梯度钻井隔水管环空温度场模拟[J]. 石油学报, 2014, 35(4):779-785.
    [130] 高永海, 孙宝江, 赵欣欣, 王志远, 等. 水合物钻探井筒多相流动及井底压力变化规律[J]. 石油学报, 2012, 33(5):881-886.
    [131] 高永海, 孙宝江, 赵欣欣, 王志远, 等. 深水钻井井涌动态模拟[J]. 中国石油大学学报(自然科学版), 2010, 34(6):66-70.
    [132] 侯磊, 孙宝江, 蒋廷学, Geng Xueyu, 王志远, 等. 支撑剂在超临界二氧化碳中的跟随性计算[J]. 石油学报, 2016, 37(8):1061-1068.
    [133] 李昊, 孙宝江, 赵欣欣, 路继臣, 王志远, 等. 高压气井压井井筒温度场预测与影响因素分析[J]. 中国石油大学学报(自然科学版), 2009, 33(6):61-65.
    [134] 王金波, 孙宝江, 李昊, 王宁, 王志远, 等. 基于随钻电阻率响应特征的深水钻井气侵早期监测方法[J]. 中国石油大学学报(自然科学版), 2017, 41(06):94-100.
    [135] 徐加放, 丁廷稷, 张瑞, 张振越, 顾甜甜, 程远方, 王志远. 水基钻井液低温流变性调控用温敏聚合物研制及性能评价[J]. 石油学报, 2018, 39(05):597-603.
    [136] 王志远, 于璟, 孟文波, 等.深水气井测试管柱内天然气水合物沉积堵塞定量预测[J].中国海上油气,2018,30(03):122-131.
    [137] 王志远, 张剑波, 蒋宏伟, 等. 含水合物相变的油气井多相流动模型及应用研究[J]. 水动力学研究与进展A辑, 2017, 32 (5):584-591.
    [138] 王志远, 赵阳, 孙宝江, 等. 井筒环雾流传热模型及其在深水气井水合物生成风险分析中的应用[J]. 水动力学研究与进展A辑, 2016, 31(1):20-27.
    [139] 王志远, 邢廷瑞, 华美瑞, 等. 深水压井节流管线内的气体交换效应分析[J]. 石油钻探技术, 2013, 41(3):19-24.
    [140] 王志远, 孙宝江, 程海清, 等. 深水井控过程中天然气水合物生成区域预测[J]. 应用力学学报, 2009, 26(2):224-229.
    [141] 谢翠丽,王志远. L管气液两相内流致振的流固耦合数值模拟[J].石油机械, 2019, 47(04):124-128.
    [142] 柯珂, 王志远, 周宇阳, 等. 高陡构造易漏地层钻前裂缝定量描述方法[J]. 断块油气田, 2015, 22(2):263-266.
    [143] 柯珂, 王志远, 郑清华, 等. 深水智能完井关键设备组合优化模型的建立与应用分析[J]. 中国海上油气, 2015, 27(1):79-85.
    [144] 徐加放, 王志远, 高永海, 等. 虚实结合的海洋油气工程实践教学平台的构建[J]. 实验技术与管理, 2015, 32(12):112-115.
    [145] 张洪坤, 王志远, 李昊, 等. 套管外挤力的数值模拟及影响因素分析[J]. 石油机械, 2014, 42(1):1-5.
    [146] 王金波, 王志远, 张伟国, 等. 南海深水海域避台风期间井控安全作业周期研究[J]. 石油钻探技术, 2013, 41(3):51-55.
    [147] 孙宝江, 王雪瑞, 王志远, 等. 控制压力固井技术研究进展及展望[J]. 石油钻探技术, 2019, 47:1-8
    [148] 孙小辉, 孙宝江, 王志远, 等. 超临界CO2钻井井筒水合物形成区域预测[J]. 石油钻探技术, 2015, 43(6):13-19.
    [149] 张振楠, 孙宝江, 王志远, 等. 深水气井测试天然气水合物生成区域预测及分析[J]. 水动力学研究与进展A辑, 2015, 30(2):167-172.
    [150] 王宁, 孙宝江, 王志远, 等. 考虑钻头进尺影响的深水钻井水力参数优选[J]. 中国海上油气, 2015, 27(3):126-132.
    [151] 王雪瑞, 孙宝江, 王志远, 等. 海上隔水管锤击作业溜桩预测方法及预防措施[J]. 中国海上油气, 2015, 27(3):133-137.
    [152] 侯磊, 孙宝江, 王志远, 等. 超临界CO2中沉降颗粒气液双重规律研究[J]. 水动力学研究与进展A辑, 2015, 30(1):64-69.
    [153] 王宁, 孙宝江, 王志远. 井筒温度场解析求解的边界条件处理方法[J]. 水动力学研究与进展A辑, 2015, 30(3):279-283.
    [154] 马永乾, 邵茹, 王志远, 等. 管内搅拌流传热模型及实验研究[J]. 应用力学学报, 2014(4):611-615.
    [155] 公培斌, 孙宝江, 王志远, 等. 井内喷空工况压井方法研究[J]. 石油天然气学报, 2012, 34(1):100-103.
    [156] 宋荣荣, 孙宝江, 王志远, 等. 控压钻井气侵后井口回压的影响因素分析[J]. 石油钻探技术, 2011, 39(4):19-24.
    [157] 高永海, 孙宝江, 王志远. 深水井涌压井方法及其适应性分析[J]. 石油钻探技术, 2011, 39(2):45-49.
    [158] 韦红术, 杜庆杰, 曹波波, 王志远, 等. 深水油气井关井期间井筒含天然气水合物相变的气泡上升规律研究[J]. 石油钻探技术, 2019, 47(02):42-49.
    [159] 滕学清, 孙宝江, 张耀明, 王志远, 等. 无安全压力窗口裂缝性地层五步压回法压井方法[J]. 石油钻探技术, 2018, 46(06):20-25.
    [160] 张洪坤, 徐爽, 孙宝江, 王志远, 等. 基于ANSYS的大尺寸割缝筛管布缝参数设计 [J]. 石油机械, 2015, 43(10):9-12.
    [161] 宋荣荣, 孙宝江, 刘晓兰, 王志远. 井筒气侵后井底压力变化的计算分析[J]. 断块油气田, 2011, 18(4):486-488.
    [162] 徐鹏, 孙宝江, 张晶, 王志远. 深水钻井浅层气动力压井排量计算[J]. 中国海上油气, 2010, 22(1):46-48.
    [163] 王金堂, 孙宝江, 李昊, 相恒富, 王志远. 大位移水平井钻井岩屑速度分布模拟分析[J]. 水动力学研究与进展A辑, 2014, 29(6).
    [164] 赵景芳, 宋林松, 吉飞, 邓智铭, 张剑波, 王志远.天然气水合物降压开采储层出砂数值模拟[J].中国海上油气,2019,31(02):116-124.
  • 专利
    发明专利
    1.Anti-settling Apparatus and Method and Apparatus for Checking the Same, and Apparatus for Preventing Settlement of Well,2019.06.13,US20190178046A1,1/6
    2.Control method and control device for drilling operations,2019.07.02,US10337267B1,1/5
    3.Homocentric squares-shaped well structure for marine hydrate reserve recovery utilizing geothermal heat and method thereof,2019.04.23,US10267129B1,2/6
    4.Well killing method and device for a fractured formation without safety pressure window by five-step bullheading,2019.09.10,US10408014B1,4/7
    5.防沉系统、校核方法、校核系统及防止目标井沉降的系统,2020.08.14,CN111535769A,1/7;
    6.用于钻井作业的控制方法及控制装置,2020.2.21,CN108643887B,1/5
    7.测量深水气井环空测试液保温性能的装置及方法,20190517,CN109765265A,1/6
    8.模拟冻土地带钻井的装置,2019.05.21,CN108104716A,1/6 
    9.防沉装置及其校核方法和装置、防止井沉降的装置,2019.10.18,CN108131110A,1/6
    10.极地钻井平台井架保温加热实验装置及实验方法,2019-10-15,CN110331945A,1/6
    11.极地钻井平台井架保温装置及其设计方法,2019-10-15,CN110331946A,1/6
    12.天然气水合物开采过程中除砂除水装置及方法,2019.04.05,CN106869902B,1/6
    13.利用底层产气清除水合物井中出砂出水的装置及方法,2019.06.14,CN106869871A,1/6
    14.深水气井生产管路水合物堵塞早期监测装置及方法,2018.04.06,CN106322121A,1/6
    15.深水气井测试中天然气水合物堵塞监测装置及方法,2018.02.27,CN106194165A,1/8
    16.井下节流阀、深水气井测试系统及测试方法,2016.08.17,CN104343416B,1/8
    17.抑制酸性气体突发膨胀的井口回压确定方法,2015.05.27,CN103233719B,1/7
    18.深水气井测试用水合物自动防治装置与防治方法,2015.05.27,CN104088623B,1/5
    19.热流体压裂开采天然气水合物藏实验装置,2015.04.15,CN103206210B,1/4
    20.一种确定深水隔水管气举钻井注气量的方法,2014.12.03,CN103122756B,1/2
    21.热流体压裂开采天然气水合物装置及方法,2014.07.23,CN103206199B,1/4
    21.增加避台风期间海洋钻井安全作业周期的方法,2014.05.07,CN103195394B,1/6
    22.钻前预测高陡构造地层漏失速率的方法,2014.03.19,CN103015996B,1/3
    23.测量超临界二氧化碳压裂裂缝中流型分布的装置,2019-06-07,CN106556506B,2/7
    24.用于施加井口回压的双节流控制泥浆泵分流管汇及其方法,2014.02.19,CN102828712B,2/6
    25.基于钻井环空井筒多相流动计算的空压钻井方法,2013.08.28,CN102943620B,2/7
    26.力学特性检测装置以及力检测系统,2019-10-18,CN110346285A,3/4
    27.利用地热开采海洋水合物藏的回型井结构及方法,2019-08-13,CN108678724B,3/7
    28.救援井压井模拟实验装置及方法,2018-06-29,CN108222926A,3/5
    29.测量单元、溢流信息识别设备及方法,2017-02-15,CN106401571A,3/4
    30.深水双梯度钻井用海底井口压力指示及自动调节装置,2015-09-09,CN104895548A,3/7
    31.测量超临界二氧化碳压裂液流变性的装置及方法,2014-10-15,CN104101559A,3/6
    32.井喷无法关井情况下的地层压力确定方法,2014.06.25,CN103244108B,3/7
    33.一种控压钻井实验装置及其控制方法,2014-05-07,CN103775049A,3/8
    34.超临界二氧化碳携砂流动机理研究装置,2013.03.06,CN102704922B,3/6
    35.用于超临界二氧化碳定压比热测量的实验装置与方法,2013-12-11,CN103439356A,3/6
    36.用于无安全压力窗口裂缝性地层压井的五步压回法及设备,2019-04-16,CN109630047A,4/7
    37.超临界二氧化碳钻井井筒内相态的控制装置,2013.04.10,CN102606069B,4/6
    38.利用压裂开采海洋水合物藏的双L井结构及方法,2020.06.05,CN108868736B,4/7
    39.一种井底应力诱导卸荷钻头及其提高钻井速度方法,2020.09.01,CN111608589A,4/8
    40.控压钻井系统及其控制方法,2019-11-29,CN110513063A,4/5
    41.测量不同粘度下超临界二氧化碳压裂液节流系数的装置,2016-02-24,CN105353084A,4/6
    42.海水淡化的方法,2020.06.26,CN111333238A,5/6
    43.用于开采海洋水合物的双连通井结构及方法,2020-05-15,CN108915643B,5/6
    44.组合物及传热介质的制备方法以及水合物相变制冷方法和水合物相变制冷系统,2020-04-28,CN109266312B,5/6
    45.碳纤维抽油杆和钢制抽油杆连接接头及其安装方法,2019-09-13,CN108286415B,5/8
    46.一种天然气水合物的开采方法,2013.04.10,CN102704902B,5/8
    47.一种用于提高水合物藏采收率的储层改造装置与方法,2020.06.16,CN111287708A,6/8
    48.一种提高热障涂层耐热腐蚀性能的激光表面处理方法,2019-12-31,CN108220953B,6/8
    49.随钻测井值响应规律模拟实验装置,2013.03.06,CN102606136B,6/8
    50.泡状流下气体水合物阻塞机理模拟实验装置及方法,2019-08-30,CN106908446B,7/7


    软件版权:
    1.深水气井测试水合物防治软件系统1.0
    2.深水钻井水力参数优化设计系统1.0
    3.海洋钻井井控水力参数设计软件系统1.0
    4.深水钻井井控过程模拟及设计软件 V2.0
    5.三高气井压井工艺参数计算软件系统
    6.三高气井井筒压力预测软件V1.0
    7.控制压力钻井多相流动参数计算及回压控制软件系统V1.0
    8.欠平衡钻井水力计算软件系统5.6
    9.环空充气欠平衡钻井水力计算软件系统5.5
    10.柱塞气举动力学仿真软件V1.0
    11.深水智能完井优化设计软件v1.0

  • 学术交流
  • 个人风采


Baidu
map