English

»姓名:许明明

»系属:测绘系

»学位:博士

»职称:副教授

»专业:测绘科学与技术

»导师类别:硕导

»电子邮箱:xumingming@upc.edu.cn

»学术主页:https://www.researchgate.net/profile/Mingming-Xu-2

»通讯地址:青岛市黄岛区长江西路66号工科E1318

中国石油大学(华东)海洋与空间信息学院

»概况:

研究方向

高光谱遥感图像智能处理与应用

混合像元分解

湿地遥感

多源遥感数据融合

 

教育经历(倒序)

2011.09-2016.06 武汉大学测绘遥感信息工程国家重点实验室,博士,导师:张良培教授、杜博教授(摄影测量与遥感)

2007.09-2011.06 国石油大学(华东)地球科学与技术学院,学士(测绘工程)

 

工作经历(倒序)

2021.01-至今中国石油大学(华东)副教授(测绘系)

2018.07-2020.12 中国石油大学(华东)讲师(测绘系)

2016.07-2018.06 国石油大学(华东)师资博士后(地质资源与地质工程)

 

学术兼职

2023山东省高等学校青创科技支持计划“湿地遥感监测创新团队”带头人

以下国际期刊审稿人TGRSJSTARSGRSLNeural NetworksNeurocomputingPLOS ONEThe Egyptian Journal of Remote Sensing   and Space SciencesPhotogrammetric Engineering &   Remote SensingGeocarto International

AAAI-19项目委员会成员

国家自然科学基金委评议人

 

主讲课程

数字摄影测量、摄影测量实习

 

指导研究生及博士后

2021:杨志如、祝晓芳、刘航

2022:邹鑫、贾梦雪、刘明威、张金淏

2023:许津、王玺、张豪闯、邹倩倩

2024:姬玉超、赵春蓉、王茜、章越洋

 

欢迎对遥感处理与应用方向感兴趣、有追求、有目标的研究生加入团队!

 

承担项目

1.          2021.01-2024.12国家自然科学基金面上项目,NO.62071492,基于非线性混合模型的潮间带柽柳高光谱亚像元信息提取研究,主持

2.          2018.01-2020.12 国家自然科学基金青年基金项目,NO.61701542,基于原型分析理论的端元束提取及端元可变光谱解混研究,主持

3.          2017.07-2019.12 山东省自然科学基金博士基金项目,NO.ZR2017BF038,量子理论驱动的高光谱图像端元提取技术研究,主持

4.          2016.07-2018.07 博士后基金面上项目,NO.2017M622309,基于原型分析的线性及非线性高光谱混合像元分解研究,主持

5.          2024.01-2025.12 自主创新科研计划项目(理工科),NO. 24CX07005A,多源遥感湿地信息提取,主持

6.          2024.05-2025.06,横向项目,山东省生态环境厅第三次海洋污染基线调查山东省海湾精细化调查项目,主持

7.          2019.08-2020.06,横向项目,海上溢油影响评估数据应用技术与平台研发,主持

8.          2020.01-2020.12,横向项目,近海海洋环境与极地海冰信息产品处理与分析软件,主持

9.          2021.09-2022.09,横向项目,粤桂琼红树林遥感监测,主持

 

获奖情况

2018.092018 WHISPERS最佳论文奖(1/5IEEE GRSS顾及光谱变化的原型分析端元束提取方法

2021.04地理信息科技进步奖(7/14),基于空地一体倾斜摄影的地质露头精细建模技术与应用

 

荣誉称号

2020.05,荣获优秀青年工作者荣誉称号,校团委

 

著作

 

论文

近五年,发表论文50余篇,其中,第一/通讯作者论文如下:

2024

1.          J. Xu, M. Xu*, S. Liu, H. Sheng, and Z. Yang, “Temperature scaling unmixing   framework based on convolutional autoencoder,” International Journal of   Applied Earth Observation and Geoinformation, vol. 129, p. 103864, May 2024.   (SCI 一区TOP)

2.          X. Li, M. Xu*, S. Liu, H. Sheng and J. Wan, Ultra-Lightweight   Feature-Compressed Multi-Head Self-Attention Learning Networks for   Hyperspectral Image Classification, IEEE Transactions on Geoscience and   Remote Sensing.doi: 10.1109/TGRS.2024.3404929. (SCI 一区)

3.          M. Xu*, J. Xu, S.   Liu, H. Sheng and Z. Yang, Multi-Scale Convolutional Mask Network for   Hyperspectral Unmixing, IEEE Journal of Selected Topics in Applied   Earth Observations and Remote Sensing, volume 129, May 2024, 103864. (SCI 二区TOP)

4.          Mingming Xu*, Jinhao   Zhang, Shanwei Liu, and Hui Sheng. “Hyperspectral Anomaly Detection Based on   Adaptive Background Dictionary Construction and Collaborative   Representation.” International Journal of Remote Sensing 45, no. 10:   3349–3369, 2024. (SCI 三区)

5.          Xinhao Li, Mingming Xu*, Shanwei Liu, Hui Sheng and Jianhua Wan  Dual-input ultralight multi-head self-attention   learning network for hyperspectral image classification, International   Journal of Remote Sensing, 45:4, 1277-1303, 2024. (SCI 三区)

6.          许明明,刘航,窦庆文*,.基于高光谱和 LiDAR 的黄河口湿地植被分类方法[J].遥测遥控,2024,45(03):102-113.

2023

7.          Z. Yang, M. Xu*, S. Liu, H. Sheng and J. Wan, UST-Net: A U-Shaped   Transformer Network Using Shifted Windows for Hyperspectral Unmixing,   IEEE Transactions on Geoscience and Remote Sensing, vol. 61, pp. 1-15, 2023,   Art no. 5528815. (SCI 一区)

8.          M. Xu*, X. Zou, S.   Liu, H. Sheng and Z. Yang, Manifold Regularized Sparse Archetype   Analysis Considering Endmember Variability, IEEE Geoscience and Remote   Sensing Letters, vol. 20, pp. 1-5, 2023, Art no. 5506805. (SCI 三区)

9.          Z. Yang, M. Xu*, S. Liu, H. Sheng and H. Zheng, Spatial-Spectral   Attention Bilateral Network for Hyperspectral Unmixing, IEEE Geoscience   and Remote Sensing Letters, vol. 20, pp. 1-5, 2023, Art no. 5507505.(SCI 三区)

10.      J. Li, H. Sheng*, M. Xu*, S. Liu and Z. Zeng, BAMS-FE: Band-by-Band Adaptive   Multiscale Superpixel Feature Extraction for Hyperspectral Image   Classification, IEEE Transactions on Geoscience and Remote Sensing,vol. 61, pp.   1-15, 2023, Art no. 5517015. (SCI 一区)

11.      Wan, J., Wan, X., Sun, L., Xu, M.*, Sheng, H.*, Liu, S, Zou,B,   and Wang, Q. (2023). Ulva Prolifera subpixel mapping with multiple-feature   decision fusion. Journal of Oceanology and Limnology, 41, 865–880, 2023. (SCI   二区)

2022

12.      Xu, M.; Yang, Z.;   Ren, G*.; Sheng, H.; Liu, S.; Liu, W.; Ye, C. L₁ Sparsity-Constrained   Archetypal Analysis Algorithm for Hyperspectral Unmixing. IEEE Geoscience and   Remote Sensing Letters 2022, 19, 1-5, Art no. 6008605. (SCI 三区)

13.      Li, H.; Wan, J.; Liu, S.; Sheng, H.; Xu, M.* Wetland Vegetation   Classification through Multi-Dimensional Feature Time Series Remote Sensing   Images Using Mahalanobis Distance-Based Dynamic Time Warping. Remote Sensing   2022, 14, 501. (SCI 二区)

14.      Wang, D.; Wan, J.; Liu, S.; Chen, Y.;   Yasir, M.; Xu, M.*; Ren, P. BO-DRNet:   An Improved Deep Learning Model for Oil Spill Detection by Polarimetric   Features from SAR Images. Remote Sensing, 2022, 14, 264. (SCI 二区)

15.      Li Z, Shi S, Wang L, Xu M*, Li L. Unsupervised Generative   Adversarial Network with Background Enhancement and Irredundant Pooling for   Hyperspectral Anomaly Detection. Remote Sensing. 2022; 14(5):1265. (SCI 二区)

16.      Wan, Jianhua, Lujuan Wu, Shuhua Zhang,   Shanwei Liu, Mingming Xu*, Hui   Sheng, and Jianyong Cui. 2022. Monitoring of Discolored Trees Caused by   Pine Wilt Disease Based on Unsupervised Learning with Decision Fusion Using   UAV Images Forests 13, no. 11: 1884. (SCI 二区)

17.      Jianhua Wan, Jiajia Li, Mingming Xu*, Shanwei Liu, and Hui   Sheng, Node-splitting optimized canonical correlation forest algorithm   for sea fog detection using MODIS data, Opt. Express 30, 13810-13824,   2022.(SCI 二区)

2021

18.      Guo, X.; Wan, J.; Liu, S.; Xu, M*.; Sheng, H.; Yasir, M. A   scSE-LinkNet Deep Learning Model for Daytime Sea Fog Detection. Remote   Sensing, 2021, 13, 5163. (SCI 二区)

19.      Xianci Wan, Jianhua Wan*, Mingming Xu*, Shanwei Liu, Hui Sheng,   Yanlong Chen, Xiyuan Zhang, Enteromorpha coverage   information extraction by 1D-CNN and Bi-LSTM networks considering sample   balance from GOCI images, IEEE Journal of   Selected Topics in Applied Earth Observations and Remote Sensing,   2021, doi: 10.1109/JSTARS.2021.3110854.(SCI 二区)

20.      Ye, C.; Liu, S*; Xu, M.; Du,B.;Wan, J.; Sheng, H. An Endmember Bundle Extraction   Method Based on Multiscale Sampling to Address Spectral Variability for   Hyperspectral Unmixing. Remote Sensing 2021, 13, 3941. (SCI 二区)

2020年及以前

21.      M. Xu*, Y. Zhang, Y.   Fan, Y. Chen and D. Song, “Linear spectral mixing model guided artificial bee   colony method for endmember generation,” IEEE Geoscience and   Remote Sensing Letters, vol. 17, no. 12, pp. 2145-2149, 2020. (SCI   二区)

22.      Y. Zhang, Y. Fan* and M. Xu*, A   background-purification-based framework for anomaly target detection in   hyperspectral imagery, IEEE Geoscience and Remote Sensing Letters.   vol. 17, no. 7, pp. 1238-1242, July 2020. (SCI 二区)

23.      Y. Zhang, Y. Fan*, M. Xu*, W. Li, G. Zhang, L. Liu, D.   Yu, An improved low rank and sparse matrix decomposition-based anomaly   target detection algorithm for hyperspectral imagery, IEEE   Journal of Selected Topics in Applied Earth Observations and Remote Sensing,   vol. 13, pp. 2663-2672, 2020. (SCI 二区)

24.      M. Xu, B. Du and Y.   Fan, Endmember extraction from highly mixed data using linear mixture   model constrained particle swarm optimization, IEEE Transactions on   Geoscience and Remote Sensing, vol. 57, no. 8, pp. 5502-5511, 2019. (SCI 一区)

 

专利

1.          许明明杜博,张良培。一种基于量子粒子群的高光谱遥感影像端元提取方法,2018.06.19ZL   201610157103.8

2.          杜博,许明明,张良培,张乐飞。一种高光谱遥感影像端元提取方法,2018.06.29ZL 201610156222.1

3.       许明明,张燕,刘善伟。一种基于局部特征的低秩稀疏分解高光谱异常检测方法,2022.06.17ZL   202010384573.4

4.       许明明,杨志如,叶传龙,刘善伟。一种基于丰度稀疏约束的高光谱混合像元分解方法,ZL   202111059245.8

5.       许明明,叶传龙,刘善伟。一种高光谱遥感影像端元束自动提取方法,2023.09.15ZL   202111060895.4

6.        许明明,祝晓芳,郑红霞,盛辉一种多特征集成学习的双极化SAR影像浒苔提取方法,2022.12.02ZL202211126727.5

 


Baidu
map