| ||||||
Name: | Zhu Xiaolin | |||||
Academic Title: | Associate Professor | |||||
Advisor Type: | Master Supervisor | |||||
Department: | Department of Chemical Engineering | |||||
Research Interests: | Industrial Catalysis, Petrochemical Industry | |||||
E-Mail: | zhuxiaolin@upc.edu.cn, upczhuxl@163.com | |||||
Telephone: | +86-15275266591 | |||||
◎Educational Background | ||||||
2005.9-2009.7, China University of Petroleum (East China), Chemical Engineering and Technology, Bachelor of engineering 2009.9-2014.7, China University of Petroleum (East China), Chemical Engineering and Technology, PhD candidate | ||||||
◎Work Experience | ||||||
2014.8-2016.6, Tsinghua University, Department of Chemical Engineering, Postdoctor 2016.7-2016.12, China University of Petroleum (East China), College of Chemical Engineering, Lecturer 2017.1-present, China University of Petroleum (East China), College of Chemistry and Chemical Engineering, Associate professor | ||||||
◎Research Direction | ||||||
[1] Industrial Catalysis——Alkylation reaction, Methanol conversion, Catalytic oxidation, Electrocatalysis. [2] Petroleum Industry——Catalytic cracking catalyst and process, Gas-solid circulating fluidization. | ||||||
◎Research Project | ||||||
[1] 2022-2025 National Natural Science Foundation of China-General Program, Coupling mechanism of toluene-methanol alkylation and methanol autotransformation reaction and control measures for increasing olefin production, Host. [2] 2018-2020 National Natural Science Foundation of China-Youth Program, The identification of alkylation active sites of high-silicon ZSM-5 molecular sieve and the regulation and control of its catalytic performance, Host. [3] 2018-2019 Shandong Provincial Key R&D Plan, The research on structural optimization of pre-riser section of FCC riser reactor, Host. [4] 2017-2019 Natural Science Foundation of Shandong Province, The design and performance optimization of alkylation catalyst based on high-silicon ZSM-5 molecular sieve, Host. [5] 2014-2016 China Post-doctoral Science Foundation, The method and mechanism of improving fluidity of C-type cohesive particles by coating nanoparticles, Host. [6] 2017-2019 Independent Innovation Research Plan, The optimization design and basic research chair of high-silicon ZSM-5 molecular sieve for toluene methanol alkylation, Host. [7] 2017-2020 School Talent Project, Design of efficient toluene methylation catalyst and its stability enhancement method, Host. [8] 2021-2022 China National Petroleum Corporation Project, The industrial application test of complete technology of catalytic dehydrogenation of propane to propylene in non-precious metal environment-friendly fluidized bed, Participant. [9] 2021-2023 China National Petroleum Corporation Project, The pilot-scale study on optimization of process conditions of catalyst for catalytic cracking of paraffin-based crude oil to light olefins, Participant. [10] 2020-2021 China National Petroleum Corporation Project, The pilot-scale research on the technology of catalytic cracking of crude oil to olefins, Participant. [11] 2019-2020 China National Petroleum Corporation Project, Research and Participation of Catalytic Cracking-Hydrogenation and Recycling Technology of Circulating Oil, Participant. [12] 2019-2021 China National Petroleum Corporation Project, The research on coupling regulation of catalytic hydrogenation and catalytic cracking of aromatic components, Participant. [13] 2018-2019 China National Petroleum Corporation Project, The research of selective hydrogenation recycling technology of catalytic diesel narrow fraction, Participant. [14] 2018-2020 Independent Innovation Research Plan, Optimization design and basic research participation of new tin-based propane dehydrogenation catalyst, Participant. | ||||||
◎Representative Papers and Patents | ||||||
Papers Recently, I have published more than 50 academic papers, of which more than 40 are included in SCI.
[1] Zhu XL*, Wang Y, Wang GW, Hou YF, Yu MX, Yang X, Yin FM. Synergistic co-conversion of pentane and methanol to aromatics over bifunctional metal/ZSM-5 zeolite catalysts. Microporous and Mesoporous Materials (SCI二区TOP, IF = 5.455), 2021, 320: 111107. [2] Cheng M, Wang Y, Wang WH, Wang GW, Zhu XL*, Li CY. Promoting effect of copper oxide on CsX zeolite catalyst for side-chain alkylation of toluene with methanol. Microporous and Mesoporous Materials (SCI二区TOP, IF = 5.455), 2021, 311: 110732. [3] Wang Y, Yang X, Hou CX, Yin FM, Wang GW, Zhu XL*, Jiang GY, Li CY. Improved catalytic activity and stability of ba substituted SrTiO3 perovskite for oxidative coupling of methane. ChemCatChem (SCI二区, IF = 5.686), 2021, 13: 4182-4191. [4] Zhu XL*, Wang H, Wang GW, Hou YF, Zhang JY, Li CY, Yang CH. Aromatization of n-pentane over Zn/ZSM-5 catalysts: effect of Si/Al ratio and reaction pathway. Journal of Porous Materials (SCI三区, IF = 2.496), 2021, 28: 1059-1067. [5] Wang SS, Cheng M, Zhu XL*, Lin CH, Wang GW, Zhen XP, Tian LY, Li CY. Effect of swirling gas nozzles on gas-solid flow patterns inside a novel multi-regime riser. Powder Technology (SCI二区, IF = 5.134), 2020, 367: 233-242. [6] Zhu XL*, Yu MX, Cheng M, Wang Y, Li BQ, Zhang HN, Wang GW, Li CY*. Conceptual fluid catalytic cracking process with the additional regenerated catalyst circulation path for gasoline reprocessing and upgrading with minimum loss. Energy & Fuels (SCI二区TOP, IF = 3.021), 2020, 34: 235-244. [7] Wang GW, Zhang S, Zhu XL*, Li CY*. Dehydrogenation versus hydrogenolysis in the reaction of light alkanes over Ni-based catalysts. Journal of Industrial and Engineering Chemistry (SCI二区, IF = 4.978), 2020, doi: 10.1002/tcr.201900090. [8] Zhu XL*, Zhang JY, Cheng M, Wang GW, Yu MX, Li CY*. Methanol aromatization over Mg-P-modified [Zn,Al]ZSM-5 zeolites for efficient coproduction of para-xylene and light olefins. Industrial & Engineering Chemistry Research (SCI二区TOP, IF = 3.375), 2019, 58: 19446-19455. [9] Zhang JY, Zhu XL*, Zhang SH, Cheng M, Yu MX, Wang GW, Li CY*. Selective production of para-xylene and light olefins from methanol over the mesostructured Zn-Mg-P/ZSM-5 catalyst. Catalysis Science & Technology (SCI二区, IF = 5.726), 2019, 9: 316-326. [10] Liu JW, Wang GW, Zhu XL*, Li CY*, Shan HH. Temperature-programmed studies of isobutene oxidation over alpha-Bi2Mo3O12: Active oxygen species and reaction mechanism. Applied Surface Science (SCI二区, IF = 5.155), 2019, 470: 846-853. [11] Zhang JY, Zhu XL*, Wang GW, Wang PZ, Meng Z, Li CY*.The origin of the activity and selectivity of silicalite-1 zeolite for toluene methylation to para-xylene. Chemical Engineering Journal (SCI一区TOP, IF = 8.355), 2017, 327: 278-285. [12] Zhang HN, Zhu XL*, Chen XC, Miao PP, Yang CC, Li CY*. Fluid catalytic cracking of hydrogenated light cycle oil for maximum gasoline production: effect of catalyst composition. Energy & Fuels (SCI二区TOP, IF = 3.021), 2017, 31: 2749-2754. [13] Zhu XL, Zhang Q*, Huang C, Wang Y, Yang CH, Wei F. Validation of surface coating with nanoparticles to improve the flowability of fine cohesive powders. Particuology (SCI三区, IF = 2.616), 2017, 30: 53-61. [14] Zhu XL, Tang C, Wang HF, Li BQ, Zhang Q*, Li CY, Yang CH, Wei F. Monolithic-structured ternary hydroxides as freestanding bifunctional electrocatalysts for overall water splitting. Journal of Materials Chemistry A (SCI一区TOP, IF = 10.733), 2016, 4: 7245-7250. [15] Zhu XL, Zhang Q*, Wang Y, Wei F. Review on the nanoparticle fluidization science and technology. Chinese Journal of Chemical Engineering (SCI三区, IF = 1.911), 2016, 24: 9-22. [16] Zhu XL, Tang C, Wang HF, Zhang Q*, Yang CH, Wei F. Dual-sized NiFe layered double hydroxides in situ grown on oxygen-decorated self-dispersal nanocarbon as enhanced water oxidation catalysts. Journal of Materials Chemistry A (SCI一区TOP, IF = 10.733), 2015, 3: 24540-24546. [17] Zhu XL, Geng Q, Wang GW, Li CY*, Yang CH. Hydrodynamics and catalytic reaction inside a novel multi-regime riser. Chemical Engineering Journal (SCI一区TOP, IF = 8.355), 2014, 246: 150-159. [18] Zhu XL, Li CY*, Yang CH, Wang GW, Geng Q, Li T. Gas-solids flow structure and prediction of solids concentration distribution inside a novel multi-regime riser. Chemical Engineering Journal (SCI一区TOP, IF = 8.355), 2013, 232: 290-301. [19] Zhu XL, Yang CH, Li CY*, Liu YB, Wang L, Li T, Geng Q. Comparative study of gas-solids flow patterns inside novel multi-regime riser and conventional riser. Chemical Engineering Journal (SCI一区TOP, IF = 8.355), 2013, 215: 188-201. [20] Zhu XL, Jiang S, Li CY*, Chen XB, Yang CH. Residue catalytic cracking process for maximum ethylene and propylene production. Industrial & Engineering Chemistry Research (SCI二区TOP, IF = 3.375), 2013, 52: 14366-14375. [21] Zhu XL, Wang GW, Geng Q, Li CY*, Yang CH. Pressure drop and apparent solids concentration inside a novel multi-regime riser. Advanced Materials Research (EI收录), 2013, 709: 309-312. [22] Wang GW*, Jiang YX, Zhang S, Zhu XL, Shan HH. Insight into the Active Co Phase of Co/Al2O3 Catalyst for Ethane Dehydrogenation. Catalysis Letters (SCI三区, IF = 3.186), 2022, 10.1007/s10562-021-03883-3. [23] Miao PP, Zhu XL, Zhou Z, Feng XP, Miao J, Hou CX, Li CY*. Combined dealkylation and transalkylation reaction in FCC condition for efficient conversion of light fraction light cycle oil into value-added products. Fuel (SCI一区, IF = 6.609), 2021, 304: 121356. [24] Miao PP, Zhu XL, Guo YL, Miao J, Yu MY, Li CY*. Combined mild hydrocracking and fluid catalytic cracking process for efficient conversion of light cycle oil into high-quality gasoline. Fuel (SCI一区, IF = 6.609), 2021, 292: 120364. [25] Miao PP, Miao J, Guo YL, Lin CH, Zhu XL, Li CY*. Efficient conversion of light cycle oil into gasoline with a combined hydrogenation and catalytic cracking process: effect of pre-distillation. Energy & Fuels (SCI三区, IF = 3.605), 2020, 34: 12505-12516. [26] Wang GW, Zhu XL, Li CY*. Recent progress in commercial and novel catalysts for catalytic dehydrogenation of light alkanes. Chemical Record (SCI二区, IF =5.387), 2019, doi: 10.1002/tcr.201900090. [27] Geng Q, Zhu XL, Yang J, You XH, Liu YB, Li CY*. Flow regime identification in a novel circulating-turbulent fluidized bed. Chemical Engineering Journal (SCI一区TOP, IF = 5.310), 2014, 244: 493-504. [28] Wang GW, Zhu XL, Zhang JY, Sun YN, Li CY*, Shan HH. Catalytic dehydrogenation of isobutane over Co-based catalysts. RSC Advances (SCI三区, IF = 3.289), 2014, 4: 57071-57082. [29] Geng Q, Zhu XL, Liu YX, Liu YB, Li CY*, You XH. Gas-solid flow behavior and contact efficiency in a circulating-turbulent fluidized bed. Powder Technology (SCI二区, IF = 2.759), 2013, 245: 134-145. [30] Shi JL, Wang HF, Zhu XL, Chen CM, Huang X, Zhang XD, Li BQ, Tang C, Zhang Q*. The nanostructure preservation of 3D porous graphene: New insights into the graphitization and surface chemistry of non-stacked double-layer templated graphene after high-temperature treatment. Carbon (SCI一区TOP, IF = 6.198), 2016, 103: 36-44. [31] Wang HF, Tang C, Zhu XL, Zhang Q*. A 'point-line-point' hybrid electrocatalyst for bi-functional catalysis of oxygen evolution and reduction reactions. Journal of Materials Chemistry A (SCI一区TOP, IF = 8.262), 2016, 4: 3379-3385. [32] Wang GW, Gao CC, Zhu XL, Sun YN, Li CY*, Shan HH. Isobutane dehydrogenation over metal (Fe, Co, and Ni) oxide and sulfide catalysts: reactivity and reaction mechanism. ChemCatChem (SCI二区, IF = 4.724), 2014, 6: 2305-2314. [33] Wang GW, Wu WL, Zhu XL, Sun YN, Li CY*, Shan HH. Effect of calcination temperature on isobutane dehydrogenation over Mo/MgAl2O4 catalysts. Catalysis Communications (SCI三区, IF = 3.389), 2014, 56: 119-122. [34] Tang C, Wang HF, Zhu XL, Li BQ, Zhang Q*. Advances in hybrid electrocatalysts for oxygen evolution reactions: Rational integration of NiFe layered double hydroxides and nanocarbon. Particle & Particle Systems Characterization (SCI二区, IF = 4.367), 2016, 33: 473-486. [35] Geng Q, Wang P, Zhu XL, You XH, Li CY*. Flow dynamics and contact efficiency in a novel fast-turbulent fluidized bed with ring-feeder internals. Particuology (SCI三区, IF = 2.280), 2015, 21: 203-211. [36] Wang GW, Zhang HL, Zhu QQ, Zhu XL, Li XY, Wang H, Li CY*, Shan HH.Sn-containing hexagonal mesoporous silica (HMS) for catalytic dehydrogenation of propane: An efficient strategy to enhance stability. Journal of Catalysis (SCI一区TOP, IF = 7.723), 2017, 351, 90-94. [37] Zhu QQ, Wang GW*, Zhang HL, Zhu XL, Li CY*. n-Butane dehydrogenation over Ni-Sn/SiO2: Adsorption modes and reaction paths of n-butane and 1-butene. Applied Catalysis A: General (SCI二区TOP, IF = 4.630), 566: 113-120. [38] Zhu QQ, Zhang HL, Zhang S, Wang GW*, Zhu XL, Li CY*. Dehydrogenation of isobutane over a Ni-P/SiO2 catalyst: Effect of P addition. Industrial & Engineering Chemistry Research (SCI二区TOP, IF = 3.375), 58: 7934-7943. [39]Miao PP, Li K, Fan JT, Xu NW, Zhu XL, Li CY*. Efficient ring-opening reaction of tetralin over nanosized ZSM-5 zeolite: Effect of SiO2/Al2O3 ratio and reaction condition. Energy & Fuels (SCI二区TOP, IF = 3.021), 2019, 33: 9480-9490. [40] Li BQ, Tang C, Wang HF, Zhu XL, Zhang Q*. An aqueous preoxidation method for monolithic perovskite electrocatalysts with enhanced water oxidation performance. Science Advances (SCI一区TOP, IF = 12.804), 2016, 2: e1600495. [41] Wang GW, Sun NN, Gao CC, Zhu XL, Sun YN, Li CY*, Shan HH. Promoting mechanism of sulfur addition in catalytic dehydrogenation of isobutane over Mo/MgAl2O4 catalysts. Applied Catalysis A: General (SCI二区, IF = 4.012), 2014, 478: 71-80. | ||||||
◎Representative Works | ||||||
◎Awards and Honors | ||||||
[1] November 2018, won the title of High-level Talents in West Coast New District of Qingdao, which is short of talents. [2] October 2015, won the Excellent Doctoral Dissertation of Shandong Province [3] December 2013, awarded Top Ten Scholars by China University of Petroleum. | ||||||
◎Courses Offered | ||||||
Undergraduate:《Chemical Process Analysis and Synthesis》, 《Introduction to Petroleum Processing》, 《Professional Experiment》. | ||||||
◎Student Training | ||||||
1. Guiding Graduate Students Supervising 1 doctoral student and 6 master students. Two graduate students have gone to Zhejiang University to study for doctoral degree and Sinopec Zhenhai Refining and Chemical Industry, respectively. 2. Enrollment Majors and Requirements The students majoring in chemical engineering, chemistry and materials are welcome to apply for it. | ||||||
◎Part-time Academic Job | ||||||
Reviewers for Applied Catalysis B: Environmental (IF = 19.503)、Chemical Engineering Journal (IF = 13.273)、Journal of Energy Chemistry (IF = 9.676)、ACS Applied Materials & Interfaces (9.229)、Fuel (IF = 6.609)、Applied Catalysis A: General (IF = 5.706)、Microporous and Mesoporous Materials (IF = 5.455)、Powder Technology (IF = 5.134)、Particuology (IF = 3.067)、Industrial & Engineering Chemistry Research (IF = 3.720)、Energy & Fuels (IF = 3.605). | ||||||
|